Search results
Results From The WOW.Com Content Network
For the 1-dimensional case, the geometric median coincides with the median.This is because the univariate median also minimizes the sum of distances from the points. (More precisely, if the points are p 1, ..., p n, in that order, the geometric median is the middle point (+) / if n is odd, but is not uniquely determined if n is even, when it can be any point in the line segment between the two ...
In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's centroid .
The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode. The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean. The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter.
For example, a distribution of points in the plane will typically have a mean and a mode, but the concept of median does not apply. The median makes sense when there is a linear order on the possible values. Generalizations of the concept of median to higher-dimensional spaces are the geometric median and the centerpoint.
The median of the geometric distribution is ⌈ ⌉ when defined over [9] and ⌊ ⌋ when defined over . [ 3 ] : 69 The mode of the geometric distribution is the first value in the support set.
The median is also a Fréchet mean, if the definition of the function Ψ is generalized to the non-quadratic = = (,), where =, and the Euclidean distance is the distance function d. [3] In higher-dimensional spaces, this becomes the geometric median.
The Weber problem generalizes the geometric median, which assumes transportation costs per unit distance are the same for all destination points, and the problem of computing the Fermat point, the geometric median of three points. For this reason it is sometimes called the Fermat–Weber problem, although the same name has also been used for ...
In mathematics, statistics, and operations research, the Fermat–Weber problem is either of two closely related problems: . Geometric median, the problem of finding a point minimizing the sum of distances from given points