When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The term vector was coined by W. R. Hamilton around 1843, as he revealed quaternions, a system which uses vectors and scalars to span a four-dimensional space. For a quaternion q = a + bi + cj + dk, Hamilton used two projections: S q = a, for the scalar part of q, and V q = bi + cj + dk, the vector part.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().

  4. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

  5. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    Vectors and scalars can be added. When a vector is added to a scalar, a completely different entity, a quaternion is created. A vector plus a scalar is always a quaternion even if the scalar is zero. If the scalar added to the vector is zero then the new quaternion produced is called a right quaternion. It has an angle characteristic of 90 degrees.

  6. Scalar multiplication - Wikipedia

    en.wikipedia.org/wiki/Scalar_multiplication

    Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).

  7. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Then F m×n is a vector space over F. Vector addition is just matrix addition and scalar multiplication is defined in the obvious way (by multiplying each entry by the same scalar). The zero vector is just the zero matrix. The dimension of F m×n is mn. One possible choice of basis is the matrices with a single entry equal to 1 and all other ...

  8. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.

  9. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.