Search results
Results From The WOW.Com Content Network
Two-dimensional NMR spectra provide more information about a molecule than one-dimensional NMR spectra and are especially useful in determining the structure of a molecule, particularly for molecules that are too complicated to work with using one-dimensional NMR. The first two-dimensional experiment, COSY, was proposed by Jean Jeener, a ...
NMR is extensively used in medicine in the form of magnetic resonance imaging. NMR is widely used in organic chemistry and industrially mainly for analysis of chemicals. The technique is also used to measure the ratio between water and fat in foods, monitor the flow of corrosive fluids in pipes, or to study molecular structures such as ...
The COSY experiment generates a two-dimensional spectrum with chemical shifts along the x-axis (horizontal) and y-axis (vertical) and involves several key steps. [1] First, the sample is excited using a series of radiofrequency (RF) pulses, bringing the nuclear spins into a higher energy state.
This experiment correlates the chemical shift of amide of a residue the Cα of the same residue as well as those of the preceding residue. [2] Each strip gives two peaks, the inter and intra-residue Cα peaks. Peak from the preceding Cα may be identified from the HN(CO)CA experiment which gives only the inter-residue Cα.
Nuclear magnetic resonance (NMR) in porous materials covers the application of using NMR as a tool to study the structure of porous media and various processes occurring in them. [1] This technique allows the determination of characteristics such as the porosity and pore size distribution, the permeability , the water saturation , the ...
In conventional NMR spectroscopy, T 1 limits the pulse repetition rate and affects the overall time an NMR spectrum can be acquired. Values of T 1 range from milliseconds to several seconds, depending on the size of the molecule, the viscosity of the solution, the temperature of the sample, and the possible presence of paramagnetic species (e.g ...
Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...
On a properly acquired NMR spectrum this is seen as a narrow Lorentzian line (at 4.8 ppm, 20 C). Bulk water molecules are also relatively far from magnetic field perturbing macromolecules, such that free water protons experience a more homogeneous magnetic field, which results in slower transverse magnetization dephasing and a longer T 2 ...