When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bohr effect - Wikipedia

    en.wikipedia.org/wiki/Bohr_effect

    That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment. Since carbon dioxide reacts with water to form carbonic acid, an increase in CO 2 results in a decrease in blood pH, [2] resulting in hemoglobin proteins releasing their load of ...

  3. Oxygen–hemoglobin dissociation curve - Wikipedia

    en.wikipedia.org/wiki/Oxygen–hemoglobin...

    Left shift of the curve is a sign of hemoglobin's increased affinity for oxygen (e.g. at the lungs). Similarly, right shift shows decreased affinity, as would appear with an increase in either body temperature, hydrogen ions, 2,3-bisphosphoglycerate (2,3-BPG) concentration or carbon dioxide concentration.

  4. Carbonic anhydrase - Wikipedia

    en.wikipedia.org/wiki/Carbonic_anhydrase

    The opposite is true where a decrease in the concentration of carbon dioxide raises the blood pH which raises the rate of oxygen-hemoglobin binding. Relating the Bohr effect to carbonic anhydrase is simple: carbonic anhydrase speeds up the reaction of carbon dioxide reacting with water to produce hydrogen ions (protons) and bicarbonate ions.

  5. Haldane effect - Wikipedia

    en.wikipedia.org/wiki/Haldane_effect

    In addition to enhancing removal of carbon dioxide from oxygen-consuming tissues, the Haldane effect promotes dissociation of carbon dioxide from hemoglobin in the presence of oxygen. In the oxygen-rich capillaries of the lung, this property causes the displacement of carbon dioxide to plasma as low-oxygen blood enters the alveolus and is vital ...

  6. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.

  7. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The Bohr model was later replaced by quantum mechanics in which the electron occupies an atomic orbital rather than an orbit, but the allowed energy levels of the hydrogen atom remained the same as in the earlier theory. Spectral emission occurs when an electron transitions, or jumps, from a higher energy state to a lower energy state.

  8. Hydrogen-alpha - Wikipedia

    en.wikipedia.org/wiki/Hydrogen-alpha

    In the Bohr model of the hydrogen atom, the electron transition from energy level = to = results in the emission of an H-alpha photon.. Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum.

  9. Bohr model of the chemical bond - Wikipedia

    en.wikipedia.org/wiki/Bohr_model_of_the_chemical...

    The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [2] Thus, according to this model, the methane molecule is a regular tetrahedron, in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen. The chemical bond between ...