Search results
Results From The WOW.Com Content Network
For example, if a teacher has a class arranged in 5 rows of 6 columns and she wants to take a random sample of 5 students she might pick one of the 6 columns at random. This would be an epsem sample but not all subsets of 5 pupils are equally likely here, as only the subsets that are arranged as a single column are eligible for selection.
The probability of taking a particular item at a particular draw is equal to its fraction of the total "weight" of all items that have not yet been taken at that moment. The weight of an item depends only on its kind (e.g., color). The total number n of items to take is fixed and independent of which items happen to be taken first.
Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other. Identically distributed: Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll. In contrast, rolling 10 different dice, some of ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: For example: If X i , i = 1 , 2 , ⋯ , N {\displaystyle X_{i},i=1,2,\cdots ,N} is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and
[1] [2] [3] In probability theory and related fields, a stochastic (/ s t ə ˈ k æ s t ɪ k /) or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time.
If all weights are integers, then the run-time can be improved to (+ ), but the resulting algorithm is only weakly-polynomial. [3] If the weights are integers, and all weights are at most C (where C >1 is some integer), then the problem can be solved in O ( m n log ( n ⋅ C ) ) {\displaystyle O(m{\sqrt {n}}\log(n\cdot C))} weakly ...
Formally, a multivariate random variable is a column vector = (, …,) (or its transpose, which is a row vector) whose components are random variables on the probability space (,,), where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).