When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    The Hugging Face Hub is a platform (centralized web service) for hosting: [19] Git-based code repositories, including discussions and pull requests for projects. models, also with Git-based version control; datasets, mainly in text, images, and audio;

  3. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]

  4. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    Unlike previous models, BERT is a deeply bidirectional, unsupervised language representation, pre-trained using only a plain text corpus. Context-free models such as word2vec or GloVe generate a single word embedding representation for each word in the vocabulary, whereas BERT takes into account the context for each occurrence of a given word ...

  6. FaceNet - Wikipedia

    en.wikipedia.org/wiki/FaceNet

    FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]

  7. LaMDA - Wikipedia

    en.wikipedia.org/wiki/LaMDA

    LaMDA is a decoder-only Transformer language model. [48] It is pre-trained on a text corpus that includes both documents and dialogs consisting of 1.56 trillion words, [ 49 ] and is then trained with fine-tuning data generated by manually annotated responses for "sensibleness, interestingness, and safety".

  8. Artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Artificial_intelligence

    Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines, particularly computer systems.It is a field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals. [1]

  9. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    The reward model is first trained in a supervised manner to predict if a response to a given prompt is good (high reward) or bad (low reward) based on ranking data collected from human annotators. This model then serves as a reward function to improve an agent's policy through an optimization algorithm like proximal policy optimization. [3] [4] [5]