Search results
Results From The WOW.Com Content Network
A tree of primitive Pythagorean triples is a mathematical tree in which each node represents a primitive Pythagorean triple and each primitive Pythagorean triple is represented by exactly one node. In two of these trees, Berggren's tree and Price's tree, the root of the tree is the triple (3,4,5), and each node has exactly three children ...
A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...
A primitive Pythagorean triple can be reconstructed from a half-angle tangent. Choose r, a positive rational number in (0, 1), to be tan A/2 for the interior angle A that is opposite the side of length a. Using tangent half-angle formulas, it follows immediately that
To use modern terminology, if p and q are natural numbers such that p>q then (p 2 − q 2, 2pq, p 2 + q 2) forms a Pythagorean triple. The triple is primitive, that is the three triangle sides have no common factor, if p and q are coprime and not both odd.
In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13). A primitive Pythagorean triple is one in which a, b and c are coprime (the greatest common divisor of a ...
A Pythagorean triangle is right-angled and Heronian. Its three integer sides are known as a Pythagorean triple or Pythagorean triplet or Pythagorean triad. [9] All Pythagorean triples (,,) with hypotenuse which are primitive (the sides having no common factor) can be generated by
English: A depiction of all the primitive Pythagorean triples (a,b,c) with a and b < 1170 and a odd, where a is plotted on the horizontal axis, b on the vertical. The curvilinear grid is composed of curves of constant m − n and of constant m + n in Euclid's formula, =, =.
Two infinite ternary trees containing all primitive Pythagorean triples are described in Tree of primitive Pythagorean triples and in Formulas for generating Pythagorean triples. The root node in both trees contains triple [3,4,5]. [2]