When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as 2 {\displaystyle {\sqrt {2}}} or 2 1 / 2 {\displaystyle 2^{1/2}} .

  3. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    The square root of 2 is an algebraic number equal to the length of the hypotenuse of a right triangle with legs of length 1. An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational ) coefficients.

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  6. YBC 7289 - Wikipedia

    en.wikipedia.org/wiki/YBC_7289

    [1] [2] The student would likely have copied the sexagesimal value of the square root of 2 from another tablet, but an iterative procedure for computing this value can be found in another Babylonian tablet, BM 96957 + VAT 6598. [2] The mathematical significance of this tablet was first recognized by Otto E. Neugebauer and Abraham Sachs in 1945.

  7. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 22 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Babylonian mathematics - Wikipedia

    en.wikipedia.org/wiki/Babylonian_mathematics

    and they found square roots efficiently using division and averaging. [14] Problems of this type included finding the dimensions of a rectangle given its area and the amount by which the length exceeds the width. Tables of values of n 3 + n 2 were used to solve certain cubic equations. For example, consider the equation: