Search results
Results From The WOW.Com Content Network
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
This pathway operates at the interface of central metabolism and specialized metabolite synthesis, playing a crucial role in the synthesis of both primary and secondary metabolites. [ 2 ] [ 3 ] [ 1 ] It begins with acetyl-CoA and involves the stepwise condensation of two-carbon units, typically derived from malonyl-CoA , to form increasingly ...
In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH 2, which are electron carriers used in the ...
Acetyl-CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme (EC 6.2.1.1) involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle.All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate.
Two specific enzymes participate on the carbon monoxide side of the pathway: CO dehydrogenase and acetyl-CoA synthase. The former catalyzes the reduction of the CO 2 and the latter combines the resulting CO with a methyl group to give acetyl-CoA. [1] [2] Some anaerobic bacteria use the Wood–Ljungdahl pathway in reverse to break down acetate.
Formate + Oxalate Formate + Oxalyl-CoA. These reactions have different functions in cells. The reaction involving acetyl-CoA and butyrate (EC 2.8.3.8), for example, forms butyrate during fermentation. [3] The reaction involving acetyl-CoA and succinate (EC 2.8.3.18) is part of a modified TCA cycle [4] or forms acetate during fermentation. [5]
Three examples of these reactions are the activity of coenzyme A (CoA) transferase, which transfers thiol esters, [3] the action of N-acetyltransferase, which is part of the pathway that metabolizes tryptophan, [4] and the regulation of pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl CoA. [5]