Search results
Results From The WOW.Com Content Network
The sampling theorem was implied by the work of Harry Nyquist in 1928, [11] in which he showed that up to independent pulse samples could be sent through a system of bandwidth ; but he did not explicitly consider the problem of sampling and reconstruction of continuous signals.
In signal processing, undersampling or bandpass sampling is a technique where one samples a bandpass-filtered signal at a sample rate below its Nyquist rate (twice the upper cutoff frequency), but is still able to reconstruct the signal.
The sampling theorem states that sampling frequency would have to be greater than 200 Hz. Sampling at four times that rate requires a sampling frequency of 800 Hz. This gives the anti-aliasing filter a transition band of 300 Hz ((f s /2) − B = (800 Hz/2) − 100 Hz = 300 Hz) instead of 0 Hz if the sampling frequency was 200 Hz. Achieving an ...
An early breakthrough in signal processing was the Nyquist–Shannon sampling theorem. It states that if a real signal's highest frequency is less than half of the sampling rate, then the signal can be reconstructed perfectly by means of sinc interpolation. The main idea is that with prior knowledge about constraints on the signal's frequencies ...
Signal sampling representation. The continuous signal S(t) is represented with a green colored line while the discrete samples are indicated by the blue vertical lines. In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples".
Aliasing can be caused either by the sampling stage or the reconstruction stage; these may be distinguished by calling sampling aliasing prealiasing and reconstruction aliasing postaliasing. [1] Temporal aliasing is a major concern in the sampling of video and audio signals.
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
Between samples no measurement of the signal is made; the sampling theorem guarantees non-ambiguous representation and recovery of the signal only if it has no energy at frequency f s /2 or higher (one half the sampling frequency, known as the Nyquist frequency); higher frequencies will not be correctly represented or recovered and add aliasing ...