Search results
Results From The WOW.Com Content Network
As air flows over mountain barriers, orographic lift can create a variety of cloud effects. Orographic fog is formed as the air rises up the slope and will often envelope the summit. When the air is humid, some of the moisture will fall on the windward slope and on the summit of the mountain.
Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect.
Orographic or relief rainfall is caused when masses of air are forced up the side of elevated land formations, such as large mountains or plateaus (often referred to as an upslope effect). The lift of the air up the side of the mountain results in adiabatic cooling with altitude, and ultimately condensation and precipitation.
Effect of a rain shadow The Tibetan Plateau (center), perhaps the best example of a rain shadow. Rainfalls from the southern South Asian monsoon do not make it far past the Himalayas (seen by the snow line at the bottom), leading to an arid climate on the leeward (north) side of the mountain range and the desertification of the Tarim Basin (top).
An orographic map of Eastern Siberia from 1875 by Peter Kropotkin. Orography is the study of the topographic relief of mountains, [1] and can more broadly include hills, and any part of a region's elevated terrain. [2] Orography (also known as oreography, orology, or oreology) falls within the broader discipline of geomorphology. [3]
Wind and moist air are drawn by the prevailing winds towards the top of the mountains, condensing and precipitating before it crosses the top. In an effect opposite that of orographic lift, the air, without much moisture left, advances behind the mountains, creating a drier side called the "rain shadow". [citation needed]
Earth systems across mountain belts include the asthenosphere (ductile region of the upper mantle), lithosphere (crust and uppermost upper mantle), surface, atmosphere, hydrosphere, cryosphere, and biosphere. Across mountain belts these Earth systems each have their own processes which interact within the system they belong.
The localized greenhouse effect is stronger in locations where the lapse rate is stronger. In Antarctica, thermal inversions in the atmosphere (so that air at higher altitudes is warmer) sometimes cause the localized greenhouse effect to become negative (signifying enhanced radiative cooling to space instead of inhibited radiative cooling as is ...