Search results
Results From The WOW.Com Content Network
A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. [1] Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path (with respect to the given weights) from source to goal.
A diagram of a typical nautical sextant, a tool used in celestial navigation to measure the angle between two objects viewed by means of its optical sight. Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the ...
LPA* maintains two estimates of the start distance g*(n) for each node: . g(n), the previously calculated g-value (start distance) as in A*; rhs(n), a lookahead value based on the g-values of the node's predecessors (the minimum of all g(n' ) + d(n' , n), where n' is a predecessor of n and d(x, y) is the cost of the edge connecting x and y)
The path found by A* on an octile grid vs. the shortest path between the start and goal nodes. Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle.
In computer science, jump point search (JPS) is an optimization to the A* search algorithm for uniform-cost grids. It reduces symmetries in the search procedure by means of graph pruning, [1] eliminating certain nodes in the grid based on assumptions that can be made about the current node's neighbors, as long as certain conditions relating to the grid are satisfied.
A determining fact source for drawing star charts is naturally a star table. This is apparent when comparing the imaginative "star maps" of Poeticon Astronomicon – illustrations beside a narrative text from the antiquity – to the star maps of Johann Bayer, based on precise star-position measurements from the Rudolphine Tables by Tycho Brahe.
For premium support please call: 800-290-4726 more ways to reach us
For the simplest version of Theta*, the main loop is much the same as that of A*. The only difference is the _ function. Compared to A*, the parent of a node in Theta* does not have to be a neighbor of the node as long as there is a line-of-sight between the two nodes.