When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Subderivative - Wikipedia

    en.wikipedia.org/wiki/Subderivative

    Rigorously, a subderivative of a convex function : at a point in the open interval is a real number such that () for all .By the converse of the mean value theorem, the set of subderivatives at for a convex function is a nonempty closed interval [,], where and are the one-sided limits = (), = + ().

  3. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    Let f denote a real-valued function defined on a subset I of the real numbers.. If a ∈ I is a limit point of I ∩ [a,∞) and the one-sided limit + ():= + () exists as a real number, then f is called right differentiable at a and the limit ∂ + f(a) is called the right derivative of f at a.

  4. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  5. Increment theorem - Wikipedia

    en.wikipedia.org/wiki/Increment_theorem

    Again assume that y = f(x) is differentiable, but now let Δx be a nonzero standard real number. Then the same equation Δ y = f ′ ( x ) Δ x + ε Δ x {\displaystyle \Delta y=f'(x)\,\Delta x+\varepsilon \,\Delta x} holds with the same definition of Δ y , but instead of ε being infinitesimal, we have lim Δ x → 0 ε = 0 {\displaystyle ...

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing ⁠ ⁠, and the limit = (+) exists. [2] This means that, for every positive real number ⁠ ⁠, there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.

  7. Pseudoconvex function - Wikipedia

    en.wikipedia.org/wiki/Pseudoconvex_function

    In convex analysis and the calculus of variations, both branches of mathematics, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex.

  8. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).

  9. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    By Darboux's theorem, the derivative of any differentiable function is a Darboux function. In particular, the derivative of the function xx 2 sin ⁡ ( 1 / x ) {\displaystyle x\mapsto x^{2}\sin(1/x)} is a Darboux function even though it is not continuous at one point.