Search results
Results From The WOW.Com Content Network
Supercritical fluids act as a new medium for the generation of novel crystalline forms of APIs (Active Pharmaceutical Ingredients) named as pharmaceutical cocrystals. Supercritical fluid technology offers a new platform that allows a single-step generation of particles that are difficult or even impossible to obtain by traditional techniques.
The supercritical solvent is passed into a vessel at lower pressure than the extraction vessel. The density, and hence dissolving power, of supercritical fluids varies sharply with pressure, and hence the solubility in the lower density CO 2 is much lower, and the material precipitates for collection. It is possible to fractionate the dissolved ...
It is called supercritical fluid. The common textbook knowledge that all distinction between liquid and vapor disappears beyond the critical point has been challenged by Fisher and Widom, [8] who identified a p–T line that separates states with different asymptotic statistical properties (Fisher–Widom line).
Carbon dioxide pressure-temperature phase diagram This video shows the property of carbon dioxide to go into a supercritical state with increasing temperature. Supercritical carbon dioxide (s CO 2) is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure.
Supercritical fluid chromatography (SFC) [1] is a form of normal phase chromatography that uses a supercritical fluid such as carbon dioxide as the mobile phase. [2] [3] It is used for the analysis and purification of low to moderate molecular weight, thermally labile molecules and can also be used for the separation of chiral compounds.
The SCWR operates at supercritical pressure. The reactor outlet coolant is supercritical water.Light water is used as a neutron moderator and coolant. Above the critical point, steam and liquid become the same density and are indistinguishable, eliminating the need for pressurizers and steam generators (), or jet/recirculation pumps, steam separators and dryers ().
In thermodynamics, the Frenkel line is a proposed boundary on the phase diagram of a supercritical fluid, separating regions of qualitatively different behavior. [1] Fluids on opposite sides of the line have been described as "liquidlike" or "gaslike", and exhibit different behaviors in terms of oscillation, excitation modes, and diffusion.
However, different criteria still allow to distinguish liquid-like and more gas-like states of a supercritical fluid. These criteria result in different boundaries in the pT plane. These lines emanate either from the critical point, or from the liquid–vapor boundary (boiling curve) somewhat below the critical point.