Search results
Results From The WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
Generally, a mapping where the domain and codomain are the same set (or mathematical structure) is a projection if the mapping is idempotent, which means that a projection is equal to its composition with itself. A projection may also refer to a mapping which has a right inverse. Both notions are strongly related, as follows.
In graph-theoretic terms, the theorem states that for loopless planar graph, its chromatic number is ().. The intuitive statement of the four color theorem – "given any separation of a plane into contiguous regions, the regions can be colored using at most four colors so that no two adjacent regions have the same color" – needs to be interpreted appropriately to be correct.
A linear map is a homomorphism of vector spaces; that is, a group homomorphism between vector spaces that preserves the abelian group structure and scalar multiplication. A module homomorphism, also called a linear map between modules, is defined similarly. An algebra homomorphism is a map that preserves the algebra operations.
Some authors [14] reserve the word mapping for the case where the structure of the codomain belongs explicitly to the definition of the function. Some authors, such as Serge Lang, [13] use "function" only to refer to maps for which the codomain is a subset of the real or complex numbers, and use the term mapping for more general functions.
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.
In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number < such that for all x and y in M,