Ads
related to: tectonic plates and volcanoes map
Search results
Results From The WOW.Com Content Network
Map showing Earth's principal tectonic plates and their boundaries in detail. These plates comprise the bulk of the continents and the Pacific Ocean.For purposes of this list, a major plate is any plate with an area greater than 20 million km 2 (7.7 million sq mi)
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
Map of Earth's 16 principal tectonic plates ... lithosphere comprises a number of large tectonic plates, ... seismic activity of long chains of active volcanoes;
The North American plate is a tectonic plate containing most of North America, Cuba, the Bahamas, extreme northeastern Asia, and parts of Iceland and the Azores.With an area of 76 million km 2 (29 million sq mi), it is the Earth's second largest tectonic plate, behind the Pacific plate (which borders the plate to the west).
Obduction zones occurs when the continental plate is pushed under the oceanic plate, but this is unusual as the relative densities of the tectonic plates favours subduction of the oceanic plate. This causes the oceanic plate to buckle and usually results in a new mid-ocean ridge forming and turning the obduction into subduction. [citation needed]
Volcanoes are usually not created at transform tectonic boundaries where two tectonic plates slide past one another. Volcanoes, based on their frequency of eruption or volcanism, can be defined as either active, dormant or extinct. Active volcanoes have a recent history of volcanism and are likely to erupt again, dormant ones have not erupted ...
Tectonic plates are made up of Earth’s crust and the rigid top layer of the mantle, known as the lithospheric mantle. The planet has around a dozen large and irregularly shaped tectonic plates ...
A hotspot's position on the Earth's surface is independent of tectonic plate boundaries, and so hotspots may create a chain of volcanoes as the plates move above them. There are two hypotheses that attempt to explain their origins. One suggests that hotspots are due to mantle plumes that rise as thermal diapirs from the core–mantle boundary. [2]