When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Propulsive efficiency - Wikipedia

    en.wikipedia.org/wiki/Propulsive_efficiency

    The cycle efficiency is expressed as the percentage of the heat energy in the fuel that is converted to mechanical energy in the engine, and the propulsive efficiency is expressed as the proportion of the mechanical energy actually used to propel the aircraft.

  3. Propeller theory - Wikipedia

    en.wikipedia.org/wiki/Propeller_theory

    The ratio between a propeller's efficiency attached to a ship and in open water (′) is termed relative rotative efficiency. The overall propulsive efficiency (an extension of effective power ()) is developed from the propulsive coefficient (), which is derived from the installed shaft power modified by the effective power for the hull with ...

  4. Jet engine performance - Wikipedia

    en.wikipedia.org/wiki/Jet_engine_performance

    The thermodynamic and propulsive efficiencies are independent. For the turbojet though, any improvement which raised the cycle pressure ratio or turbine inlet temperature also raised the jet pipe temperature and pressure giving a higher jet velocity relative to aircraft velocity. As the thermal efficiency went up the propulsive efficiency went ...

  5. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    When calculating specific impulse, only propellant carried with the vehicle before use is counted, in the standard interpretation. This usage best corresponds to the cost of operating the vehicle. For a chemical rocket, unlike a plane or car, the propellant mass therefore would include both fuel and oxidizer. For any vehicle, optimising for ...

  6. Thrust-specific fuel consumption - Wikipedia

    en.wikipedia.org/wiki/Thrust-specific_fuel...

    The following table gives the efficiency for several engines when running at 80% throttle, which is approximately what is used in cruising, giving a minimum SFC. The efficiency is the amount of power propelling the plane divided by the rate of energy consumption. Since the power equals thrust times speed, the efficiency is given by

  7. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    where is propulsive efficiency (typically 0.65 for wooden propellers, 0.75 metal fixed pitch and up to 0.85 for constant-speed propellers), hp is the engine's shaft horsepower, and is true airspeed in feet per second, weight is in lbs. The metric formula is:

  8. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =.

  9. Reaction engine - Wikipedia

    en.wikipedia.org/wiki/Reaction_engine

    Due to energy carried away in the exhaust the energy efficiency of a reaction engine varies with the speed of the exhaust relative to the speed of the vehicle, this is called propulsive efficiency, blue is the curve for rocket-like reaction engines, red is for air-breathing (duct) reaction engines