Search results
Results From The WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm, it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
An organelle in eukaryotic cells now known as Golgi apparatus or Golgi complex, or sometimes simply as Golgi, was discovered by Camillo Golgi. [22] Golgi modified his black reaction using osmium dichromate solution with which he stained the nerve cells (Purkinje cells) of the cerebellum of a barn owl. [23]
Organelles are identified by microscopy, and can also be purified by cell fractionation. There are many types of organelles, particularly in eukaryotic cells. They include structures that make up the endomembrane system (such as the nuclear envelope, endoplasmic reticulum, and Golgi apparatus), and other structures such as mitochondria and ...
The Golgi apparatus (also known as the Golgi body and the Golgi complex) is composed of separate sacs called cisternae. Its shape is similar to a stack of pancakes. The number of these stacks varies with the specific function of the cell. The Golgi apparatus is used by the cell for further protein modification.
The Golgi apparatus plays a pivotal role in N-linked glycosylation, a process that begins in the ER and is elaborated within the Golgi. Through the sequential trimming and addition of sugars like GlcNAc, mannose, galactose, and sialic acid, the Golgi ensures that proteins are properly modified for their final functional roles.
Golgi apparatus (also called the Golgi body, Golgi complex, or dictyosome), an organelle in a eukaryotic cell; Golgi tendon organ, a proprioceptive sensory receptor organ; Golgi's method or Golgi stain, a nervous tissue staining technique; Golgi alpha-mannosidase II, an enzyme; Golgi cell, a type of interneuron found in the cerebellum
Intracellular transport between the Golgi apparatus and the endoplasmic reticulum. Intracellular transport is unique to eukaryotic cells because they possess organelles enclosed in membranes that need to be mediated for exchange of cargo to take place. [3]
The polarity of the microtubules is important for cellular transport, as the motor proteins kinesin and dynein typically move preferentially in the "plus" and "minus" directions respectively, along a microtubule, allowing vesicles to be directed to or from the endoplasmic reticulum and Golgi apparatus. Particularly for the Golgi apparatus ...