Ads
related to: perfect squares and cubes worksheet- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- Grades 3-5 Math lessons
Search results
Results From The WOW.Com Content Network
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From Gulley (2010).The n th coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the n th region is n times n × n.
Squares of even numbers are even, and are divisible by 4, since (2n) 2 = 4n 2. Squares of odd numbers are odd, and are congruent to 1 modulo 8, since (2n + 1) 2 = 4n(n + 1) + 1, and n(n + 1) is always even. In other words, all odd square numbers have a remainder of 1 when divided by 8. Every odd perfect square is a centered octagonal number ...
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. This shows that the square of the n th triangular number is equal to the sum of the first n cube numbers. Also, the square of the n th triangular number is the same as the sum of the cubes of the integers 1 to n.
Cubing the cube is the analogue in three dimensions of squaring the square: that is, given a cube C, the problem of dividing it into finitely many smaller cubes, no two congruent. Unlike the case of squaring the square, a hard yet solvable problem, there is no perfect cubed cube and, more generally, no dissection of a rectangular cuboid C into ...
In mathematics, Hall's conjecture is an open question on the differences between perfect squares and perfect cubes.It asserts that a perfect square y 2 and a perfect cube x 3 that are not equal must lie a substantial distance apart.
Consequently, a square number is also triangular if and only if + is square, that is, there are numbers and such that =. This is an instance of the Pell equation x 2 − n y 2 = 1 {\displaystyle x^{2}-ny^{2}=1} with n = 8 {\displaystyle n=8} .