When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.

  3. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    A Lie group is a group that is also a differentiable manifold, with the property that the group operations are compatible with the smooth structure. Lie groups are named after Sophus Lie , who laid the foundations of the theory of continuous transformation groups .

  4. Quotient group - Wikipedia

    en.wikipedia.org/wiki/Quotient_group

    The quotient group is the same idea, although one ends up with a group for a final answer instead of a number because groups have more structure than an arbitrary collection of objects: in the quotient ⁠ / ⁠, the group structure is used to form a natural "regrouping".

  5. Group structure and the axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Group_Structure_and_the...

    If a set is such that it cannot be endowed with a group structure, then it is necessarily non-wellorderable. Otherwise the construction in the second section does yield a group structure. However these properties are not equivalent. Namely, it is possible for sets which cannot be well-ordered to have a group structure.

  6. Algebraic structure - Wikipedia

    en.wikipedia.org/wiki/Algebraic_structure

    The added structure must be compatible, in some sense, with the algebraic structure. Topological group: a group with a topology compatible with the group operation. Lie group: a topological group with a compatible smooth manifold structure. Ordered groups, ordered rings and ordered fields: each type of structure with a compatible partial order.

  7. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The infinite dihedral group is an infinite group with algebraic structure similar to the finite dihedral groups. It can be viewed as the group of symmetries of the integers. The orthogonal group O(2), i.e., the symmetry group of the circle, also has similar properties to the dihedral groups.

  8. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    In this case the alternating group agrees with the symmetric group, rather than being an index 2 subgroup, and the sign map is trivial. In the case of S 0, its only member is the empty function. S 2 This group consists of exactly two elements: the identity and the permutation swapping the two points. It is a cyclic group and is thus abelian.

  9. Lie group - Wikipedia

    en.wikipedia.org/wiki/Lie_group

    To every Lie group we can associate a Lie algebra whose underlying vector space is the tangent space of the Lie group at the identity element and which completely captures the local structure of the group.