When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perfect conductor - Wikipedia

    en.wikipedia.org/wiki/Perfect_conductor

    In electrostatics, a perfect conductor is an idealized model for real conducting materials. The defining property of a perfect conductor is that static electric field and the charge density both vanish in its interior. If the conductor has excess charge, it accumulates as an infinitesimally thin layer of surface charge. An external electric ...

  3. Optical conductivity - Wikipedia

    en.wikipedia.org/wiki/Optical_conductivity

    Optical conductivity is the property of a material which gives the relationship between the induced current density in the material and the magnitude of the inducing electric field for arbitrary frequencies. [1]

  4. Interface conditions for electromagnetic fields - Wikipedia

    en.wikipedia.org/wiki/Interface_conditions_for...

    This is done by assuming conditions at the boundaries which are physically correct and numerically solvable in finite time. In some cases, the boundary conditions resume to a simple interface condition. The most usual and simple example is a fully reflecting (electric wall) boundary - the outer medium is considered as a perfect conductor.

  5. Perfect mirror - Wikipedia

    en.wikipedia.org/wiki/Perfect_mirror

    A very complex dielectric mirror can reflect up to 99.999% of the light incident upon it, for a narrow range of wavelengths and angles. A simpler mirror may reflect 99.9% of the light, but may cover a broader range of wavelengths. Almost any dielectric material can act as a perfect mirror through total internal reflection. This effect only ...

  6. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    A perfect conductor has infinite conductivity, σ = ∞, while a perfect dielectric is a material that has no conductivity at all, σ = 0; this latter case, of real-valued permittivity (or complex-valued permittivity with zero imaginary component) is also associated with the name lossless media. [18]

  7. Sources of electrical energy - Wikipedia

    en.wikipedia.org/wiki/Sources_of_electrical_energy

    Light: Energy produced by light being absorbed by photoelectric cells, or solar power. Chemical: Energy produced by chemical reaction in a voltaic cell, such as an electric battery. Pressure: Energy produced by compressing or decompressing specific crystals. Magnetism: Energy produced in a conductor that cuts or is cut by magnetic lines of ...

  8. Electrical conductor - Wikipedia

    en.wikipedia.org/wiki/Electrical_conductor

    The ampacity of a conductor, that is, the amount of current it can carry, is related to its electrical resistance: a lower-resistance conductor can carry a larger value of current. The resistance, in turn, is determined by the material the conductor is made from (as described above) and the conductor's size.

  9. Surface equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Surface_equivalence_principle

    In the case of a perfect electrical conductor, the electric currents that are impressed on the surface won't radiate due to Lorentz reciprocity. Thus, the original currents can be substituted with surface magnetic currents only. A similar formulation for a perfect magnetic conductor would use impressed electric currents. [1]