When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts ) between the top of the valence band and the ...

  3. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...

  4. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    [1] [3] E g is the optical energy band gap of the material. A, B, and C depend on the band structure of the material. They are positive constants such that 4C − B 2 > 0. Finally, n(∞), a constant greater than unity, represents the value of n at E = ∞.

  5. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  6. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    Energy band gaps can be classified using the wavevectors of the states surrounding the band gap: Direct band gap: the lowest-energy state above the band gap has the same k as the highest-energy state beneath the band gap. Indirect band gap: the closest states above and beneath the band gap do not have the same k value.

  7. Brus equation - Wikipedia

    en.wikipedia.org/wiki/Brus_equation

    The Brus equation or confinement energy equation can be used to describe the emission energy of quantum dot semiconductor nanocrystals in terms of the band gap energy E gap, the Planck constant h, the radius of the quantum dot r, as well as the effective mass of the excited electron m e * and of the excited hole m h *.

  8. Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/Shockley–Queisser_limit

    Shockley and Queisser calculated that the best band gap for sunlight happens to be 1.1 eV, the value for silicon, and gives a u of 44%. They used blackbody radiation of 6000K for sunlight, and found that the optimum band gap would then have an energy of 2.2 kT s. (At that value, 22% of the blackbody radiation energy would be below the band gap.)

  9. Free carrier absorption - Wikipedia

    en.wikipedia.org/wiki/Free_carrier_absorption

    The energy of free carriers is proportional to the square of momentum (). Using the band gap energy E g {\displaystyle E_{g}} and the electron-hole distribution function, we can obtain the absorption coefficient with some mathematical calculation.