Search results
Results From The WOW.Com Content Network
Gou Gu dual capacity discusses algorithms for calculating the areas of the inscribed rectangles and other polygons in the circle, which also serves an algorithm to calculate the value of pi. Lastly, Gou Gu similars provide algorithms of calculating heights and lengths of buildings on the mathematical basis of similar right triangles.
The problem considers a framework in the form of a rectangular grid or square grid, with rows and columns of rectangles or squares squares. The grid has r ( c + 1 ) + ( r + 1 ) c {\displaystyle r(c+1)+(r+1)c} edges, each of which has unit length and is considered to be a rigid rod, free to move continuously within the Euclidean plane but unable ...
In computational geometry, a Delaunay triangulation or Delone triangulation of a set of points in the plane subdivides their convex hull [1] into triangles whose circumcircles do not contain any of the points. This maximizes the size of the smallest angle in any of the triangles, and tends to avoid sliver triangles.
Packing different rectangles in a rectangle: The problem of packing multiple rectangles of varying widths and heights in an enclosing rectangle of minimum area (but with no boundaries on the enclosing rectangle's width or height) has an important application in combining images into a single larger image. A web page that loads a single larger ...
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The apparent triangles formed from the figures are 13 units wide and 5 units tall, so it appears that the area should be S = 13×5 / 2 = 32.5 units. However, the blue triangle has a ratio of 5:2 (=2.5), while the red triangle has the ratio 8:3 (≈2.667), so the apparent combined hypotenuse in each figure is actually bent.
Maximum disjoint set (or Maximum independent set) is a problem in which both the sizes and the locations of the input rectangles are fixed, and the goal is to select a largest sum of non-overlapping rectangles. In contrast, in rectangle packing (as in real-life packing problems) the sizes of the rectangles are given, but their locations are ...
The solution in which the three rectangles are all of different sizes and where they have aspect ratio ρ 2, where ρ is the plastic ratio. The fact that a rectangle of aspect ratio ρ 2 can be used for dissections of a square into similar rectangles is equivalent to an algebraic property of the number ρ 2 related to the Routh–Hurwitz ...