Search results
Results From The WOW.Com Content Network
The graph K 1,3 is called a claw, and is used to define the claw-free graphs. [5] The graph K 3,3 is called the utility graph. This usage comes from a standard mathematical puzzle in which three utilities must each be connected to three buildings; it is impossible to solve without crossings due to the nonplanarity of K 3,3. [6]
Proof without words that a hypercube graph is non-planar using Kuratowski's or Wagner's theorems and finding either K 5 (top) or K 3,3 (bottom) subgraphs. If is a graph that contains a subgraph that is a subdivision of or ,, then is known as a Kuratowski subgraph of . [1]
Game theory is the study of mathematical models of strategic interactions. [1] ... –1: Player 1 chooses Down: 0, 0: 3, 4: ... Action graph games [66] 2012
Wagner's theorem states that a graph is planar if and only if it has neither K 5 nor K 3,3 as a minor. In other words, the set {K 5, K 3,3} is an obstruction set for the set of all planar graphs, and in fact the unique minimal obstruction set. A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs.
In graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the ...
K 5 and K 3,3: Homeomorphic subgraph Kuratowski's theorem: K 5 and K 3,3: Graph minor Wagner's theorem: Outerplanar graphs: K 4 and K 2,3: Graph minor Diestel (2000), [1] p. 107: Outer 1-planar graphs: Six forbidden minors Graph minor Auer et al. (2013) [2] Graphs of fixed genus: A finite obstruction set Graph minor Diestel (2000), [1] p. 275 ...
Finding Nash equilibrium in a game takes exponential time in the size of the representation. If the graphical representation of the game is a tree, we can find the equilibrium in polynomial time. In the general case, where the maximal degree of a node is 3 or more, the problem is NP-complete.
K 6 is at the top of the illustration, K 3,3,1 is in the upper right, and the Petersen graph is at the bottom. The blue links indicate ΔY- or YΔ-transforms between graphs in the family. In graph theory, the Petersen family is a set of seven undirected graphs that includes the Petersen graph and the complete graph K 6.