When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    Compute the Euclidean or Mahalanobis distance from the query example to the labeled examples. Order the labeled examples by increasing distance. Find a heuristically optimal number k of nearest neighbors, based on RMSE. This is done using cross validation. Calculate an inverse distance weighted average with the k-nearest multivariate neighbors.

  3. Structured kNN - Wikipedia

    en.wikipedia.org/wiki/Structured_kNN

    Structured k-nearest neighbours (SkNN) [1] [2] [3] is a machine learning algorithm that generalizes k-nearest neighbors (k-NN). k-NN supports binary classification, multiclass classification, and regression, [4] whereas SkNN allows training of a classifier for general structured output.

  4. Nearest neighbor graph - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_graph

    For a set of points on a line, the nearest neighbor of a point is its left or right (or both) neighbor, if they are sorted along the line. Therefore, the NNG is a path or a forest of several paths and may be constructed in O(n log n) time by sorting.

  5. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.

  6. Nearest neighbour distribution - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_distribution

    In probability and statistics, a nearest neighbor function, nearest neighbor distance distribution, [1] nearest-neighbor distribution function [2] or nearest neighbor distribution [3] is a mathematical function that is defined in relation to mathematical objects known as point processes, which are often used as mathematical models of physical phenomena representable as randomly positioned ...

  7. iDistance - Wikipedia

    en.wikipedia.org/wiki/IDistance

    The kNN query is one of the hardest problems on multi-dimensional data, especially when the dimensionality of the data is high. The iDistance is designed to process kNN queries in high-dimensional spaces efficiently and it is especially good for skewed data distributions, which usually occur in real-life data sets. The iDistance can be ...

  8. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Example image with only red and green channel (for illustration purposes) Vector quantization of colors present in the image above into Voronoi cells using k-means. Example: In the field of computer graphics, k-means clustering is often employed for color quantization in image compression. By reducing the number of colors used to represent an ...

  9. Large margin nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Large_Margin_Nearest_Neighbor

    The k-nearest neighbor rule assumes a training data set of labeled instances (i.e. the classes are known). It classifies a new data instance with the class obtained from the majority vote of the k closest (labeled) training instances. Closeness is measured with a pre-defined metric. Large margin nearest neighbors is an algorithm that learns ...