When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Buoyancy - Wikipedia

    en.wikipedia.org/wiki/Buoyancy

    To find the force of buoyancy acting on the object when in air, using this particular information, this formula applies: Buoyancy force = weight of object in empty space − weight of object immersed in fluid. The final result would be measured in Newtons. Air's density is very small compared to most solids and liquids.

  3. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    To find the force of buoyancy acting on the object when in air, using this particular information, this formula applies: Buoyancy force = weight of object in empty space − weight of object immersed in fluid. The final result would be measured in Newtons. Air's density is very small compared to most solids and liquids.

  4. Calculation of buoyancy flows and flows inside buildings

    en.wikipedia.org/wiki/Calculation_of_buoyancy...

    Buoyancy force is the defined as the force exerted on the body or an object when inserted in a fluid. Buoyancy force is based on the basic principle of pressure variation with depth, since pressure increases with depth. Hence buoyancy force arises as pressure on the bottom surface of the immersed object is greater than that at the top.

  5. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity, the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [7]) is given by:

  6. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or d S equivalently (resolved into components , θ is angle to ...

  7. Submerged specific gravity - Wikipedia

    en.wikipedia.org/wiki/Submerged_specific_gravity

    Submerged specific gravity is a dimensionless measure of an object's buoyancy when immersed in a fluid.It can be expressed in terms of the equation = where stands for "submerged specific gravity", is the density of the object, and is the density of the fluid.

  8. Displacement (fluid) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(fluid)

    The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2] The weight of the displaced fluid can be found mathematically. The mass of the displaced fluid can be expressed in terms of the density and its volume, m = ρV.

  9. Grashof number - Wikipedia

    en.wikipedia.org/wiki/Grashof_number

    Usually the density decreases due to an increase in temperature and causes the fluid to rise. This motion is caused by the buoyancy force. The major force that resists the motion is the viscous force. The Grashof number is a way to quantify the opposing forces. [3] The Grashof number is: