Search results
Results From The WOW.Com Content Network
The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or ...
Statistical hypothesis testing is a key technique of both frequentist inference and Bayesian inference, although the two types of inference have notable differences. Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position (null hypothesis) is incorrect. The procedure ...
Failure of a hypothesis to produce interesting and testable predictions may lead to reconsideration of the hypothesis or of the definition of the subject. Failure of an experiment to produce interesting results may lead a scientist to reconsider the experimental method, the hypothesis, or the definition of the subject.
The null hypothesis is that there is no explanation or predictive power of the phenomenon through the reasoning that is being investigated. Once hypotheses are defined, an experiment can be carried out and the results analysed to confirm, refute, or define the accuracy of the hypotheses.
In scientific research, the null hypothesis ... An underlying issue is the appropriate form of an experimental science without numeric predictive theories: A model of ...
[11] As a consequence of this, in experimental science the null hypothesis is generally a statement that a particular treatment has no effect; in observational science, it is that there is no difference between the value of a particular measured variable, and that of an experimental prediction. [citation needed]
In frequentist statistics, power is a measure of the ability of an experimental design and hypothesis testing setup to detect a particular effect if it is truly present. In typical use, it is a function of the test used (including the desired level of statistical significance ), the assumed distribution of the test (for example, the degree of ...
By contrast, the Duhem–Quine thesis says that definitive experimental falsifications are impossible [1] and that no scientific hypothesis is by itself capable of making predictions, because an empirical test of the hypothesis requires one or more background assumptions. [2]