When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom...

    Here, the degrees of freedom arises from the residual sum-of-squares in the numerator, and in turn the n − 1 degrees of freedom of the underlying residual vector {¯}. In the application of these distributions to linear models, the degrees of freedom parameters can take only integer values. The underlying families of distributions allow ...

  3. Welch–Satterthwaite equation - Wikipedia

    en.wikipedia.org/wiki/Welch–Satterthwaite_equation

    In statistics and uncertainty analysis, the Welch–Satterthwaite equation is used to calculate an approximation to the effective degrees of freedom of a linear combination of independent sample variances, also known as the pooled degrees of freedom, [1] [2] corresponding to the pooled variance.

  4. DFFITS - Wikipedia

    en.wikipedia.org/wiki/DFFITS

    Thus, for low leverage points, DFFITS is expected to be small, whereas as the leverage goes to 1 the distribution of the DFFITS value widens infinitely. For a perfectly balanced experimental design (such as a factorial design or balanced partial factorial design), the leverage for each point is p/n, the number of parameters divided by the ...

  5. Mixed-design analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Mixed-design_analysis_of...

    For example, if participants completed a specific measure at three time points, C = 3, and df WS = 2. The degrees of freedom for the interaction term of between-subjects by within-subjects term(s), df BS×WS = (R – 1)(C – 1), where again R refers to the number of levels of the between-subject groups, and C is the number of within-subject tests.

  6. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    To locate the critical F value in the F table, one needs to utilize the respective degrees of freedom. This involves identifying the appropriate row and column in the F table that corresponds to the significance level being tested (e.g., 5%). [6] How to use critical F values: If the F statistic < the critical F value Fail to reject null hypothesis

  7. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    In that event, the likelihood test is still a sensible test statistic and even possess some asymptotic optimality properties, but the significance (the p-value) can not be reliably estimated using the chi-squared distribution with the number of degrees of freedom prescribed by Wilks. In some cases, the asymptotic null-hypothesis distribution of ...

  8. Wilks's lambda distribution - Wikipedia

    en.wikipedia.org/wiki/Wilks's_lambda_distribution

    Computations or tables of the Wilks' distribution for higher dimensions are not readily available and one usually resorts to approximations. One approximation is attributed to M. S. Bartlett and works for large m [2] allows Wilks' lambda to be approximated with a chi-squared distribution

  9. Repeated measures design - Wikipedia

    en.wikipedia.org/wiki/Repeated_measures_design

    The F statistic is the same as in the Standard Univariate ANOVA F test, but is associated with a more accurate p-value. This correction is done by adjusting the degrees of freedom downward for determining the critical F value. Two corrections are commonly used: the Greenhouse–Geisser correction and the Huynh–Feldt correction.