Search results
Results From The WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
Surface tension (denoted by σ) describes the energy required to change the shape of a fluid when it comes into contact with another fluid in which it is not miscible (e.g., blood and air). This plays a big role in the formation of spherical blood droplets as they fall, as well as the way they react when they hit a surface. [ 21 ]
Surface tension – Tendency of a liquid surface to shrink to reduce surface area; Tribology – Science and engineering of interacting surfaces in relative motion; Unilateral contact – Mechanical constraint which prevents penetration between two bodies; Wetting – Ability of a liquid to maintain contact with a solid surface
The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γ δA, is needed (where γ is the surface energy density of the liquid).
Cloth, treated to be hydrophobic, shows a high contact angle. The theoretical description of contact angle arises from the consideration of a thermodynamic equilibrium between the three phases: the liquid phase (L), the solid phase (S), and the gas or vapor phase (G) (which could be a mixture of ambient atmosphere and an equilibrium concentration of the liquid vapor).
Surface rheology is a description of the rheological properties of a free surface. When perfectly pure, the interface between fluids usually displays only surface tension . [ 1 ] The stress within a fluid interface can be affected by the adsorption of surfactants in several ways:
Surface tension: The condensation of a material means that the atoms, ions or molecules are more stable if they are surrounded by other similar species. The surface tension of an interface thus varies according to the density on the surface. Dense crystallographic planes