Search results
Results From The WOW.Com Content Network
In this case, the terminal velocity increases to about 320 km/h (200 mph or 90 m/s), [citation needed] which is almost the terminal velocity of the peregrine falcon diving down on its prey. [4] The same terminal velocity is reached for a typical .30-06 bullet dropping downwards—when it is returning to earth having been fired upwards, or ...
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
A less tedious means of achieving dynamic balance requires just four measurements. 1) initial imbalance reading 2) an imbalance reading with a test mass attached on a reference point 3) The test mass moved to 120 degrees ahead and the imbalance again noted. 4) The test mass finally moved to 120 degrees behind the reference point.
In this case, the half planes can be described by a point P of their intersection, and three vectors b 0, b 1 and b 2 such that P + b 0, P + b 1 and P + b 2 belong respectively to the intersection line, the first half plane, and the second half plane. The dihedral angle of these two half planes is defined by
The lower half-plane is the set of points (,) with < instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example of two-dimensional half-space. A half-plane can be split in two quadrants.
Considering the Hafele–Keating experiment in a frame of reference at rest with respect to the center of the Earth (because this is an inertial frame [3]), a clock aboard the plane moving eastward, in the direction of the Earth's rotation, had a greater velocity (resulting in a relative time loss) than one that remained on the ground, while a ...
d is the total horizontal distance travelled by the projectile. v is the velocity at which the projectile is launched; g is the gravitational acceleration—usually taken to be 9.81 m/s 2 (32 f/s 2) near the Earth's surface; θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile
The kinetic energy is , and since the particle is constrained to move along a curve, its velocity is simply /, where is the distance measured along the curve. Likewise, the gravitational potential energy gained in falling from an initial height y 0 {\displaystyle y_{0}} to a height y {\displaystyle y} is m g ( y 0 − y ) {\displaystyle mg(y_{0 ...