When.com Web Search

  1. Ad

    related to: curvature kappa formula physics calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    A closely related notion of curvature comes from gauge theory in physics, where the curvature represents a field and a vector potential for the field is a quantity that is in general path-dependent: it may change if an observer moves around a loop. Two more generalizations of curvature are the scalar curvature and Ricci curvature. In a curved ...

  3. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The reciprocal of the curvature is called the radius of curvature. A circle with radius r has a constant curvature of κ ( t ) = 1 r {\displaystyle \kappa (t)={\frac {1}{r}}} whereas a line has a curvature of 0.

  4. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Meaning of Einstein's Equation — An explanation of Einstein's field equation, its derivation, and some of its consequences; Video Lecture on Einstein's Field Equations by MIT Physics Professor Edmund Bertschinger. Arch and scaffold: How Einstein found his field equations Physics Today November 2015, History of the Development of the Field ...

  5. Kappa curve - Wikipedia

    en.wikipedia.org/wiki/Kappa_curve

    The kappa curve has two vertical asymptotes. In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa).The kappa curve was first studied by Gérard van Gutschoven around 1662.

  6. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  7. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The formulas given above for T, N, and B depend on the curve being given in terms of the arclength parameter. This is a natural assumption in Euclidean geometry, because the arclength is a Euclidean invariant of the curve. In the terminology of physics, the arclength parametrization is a natural choice of gauge. However, it may be awkward to ...

  8. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    A plane curve with non-vanishing curvature has zero torsion at all points. Conversely, if the torsion of a regular curve with non-vanishing curvature is identically zero, then this curve belongs to a fixed plane. The curvature and the torsion of a helix are constant. Conversely, any space curve whose curvature and torsion are both constant and ...

  9. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical ...