Search results
Results From The WOW.Com Content Network
Telomerase reverse transcriptase (abbreviated to TERT, or hTERT in humans) is a catalytic subunit of the enzyme telomerase, which, together with the telomerase RNA component (TERC), comprises the most important unit of the telomerase complex. [5] [6] Telomerases are part of a distinct subgroup of RNA-dependent polymerases.
The core domain and CR4/CR5 conserved domain associate with TERT, and are the only domains of TERC necessary for in vitro catalytic activity of telomerase. [11] The 3’ end of TERC consists of a conserved H/ACA domain, [10] a 2 hairpin structure connected by a single-stranded hinge and bordered on the 3’ end by a single-stranded ACA sequence ...
The genes of telomerase subunits, which include TERT, [16] TERC, [17] DKC1 [18] and TEP1, [19] are located on different chromosomes. The human TERT gene (hTERT) is translated into a protein of 1132 amino acids. [20] TERT polypeptide folds with (and carries) TERC, a non-coding RNA (451 nucleotides long). TERT has a 'mitten' structure that allows ...
Here, the single-stranded DNA curls around in a long circle, stabilized by telomere-binding proteins. [26] At the very end of the T-loop, the single-stranded telomere DNA is held onto a region of double-stranded DNA by the telomere strand disrupting the double-helical DNA, and base pairing to one of the two strands.
In DM1 the DNA sequence that is expanded is CTG while in DM2 it is CCTG. These two sequences are found on different genes with the expanded sequence in DM2 being found on the ZNF9 gene and the expanded sequence in DM1 found on the DMPK gene. The two genes don't encode for proteins unlike other disorders like Huntington's disease or Fragile X ...
The terC RNA motif is a conserved RNA structure that was discovered by bioinformatics. [1] terC motif RNAs are found in Pseudomonadota, within the sub-lineages Alphaproteobacteria and Pseudomonadales. terC motif RNAs likely function as cis-regulatory elements, in view of their positions upstream of protein-coding genes.
A DNA replication terminus (Ter) has a role in preventing progress of the DNA replication fork. [3] Therefore, a DNA replication terminus site-binding protein binds to this site helping to block the DNA replication fork. There are two genes controlling Ter-binding activity, named tau and Tus. [1]
Promoters are located near the transcription start sites of genes, upstream on the DNA (towards the 5' region of the sense strand). Promoters can be about 100–1000 base pairs long, the sequence of which is highly dependent on the gene and product of transcription, type or class of RNA polymerase recruited to the site, and species of organism ...