When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    Table with the del operator in cartesian, cylindrical and spherical coordinates Operation Cartesian coordinates (x, y, z) Cylindrical coordinates (ρ, φ, z) Spherical coordinates (r, θ, φ), where θ is the polar angle and φ is the azimuthal angle α; Vector field A

  3. Del - Wikipedia

    en.wikipedia.org/wiki/Del

    Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus .

  4. Differential operator - Wikipedia

    en.wikipedia.org/wiki/Differential_operator

    In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science ).

  5. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    These scaling functions h i are used to calculate differential operators in the new coordinates, e.g., the gradient, the Laplacian, the divergence and the curl. A simple method for generating orthogonal coordinates systems in two dimensions is by a conformal mapping of a standard two-dimensional grid of Cartesian coordinates (x, y).

  6. Biharmonic equation - Wikipedia

    en.wikipedia.org/wiki/Biharmonic_equation

    In Cartesian coordinates, it can be written in dimensions as: = = = = (=) (=). Because the formula here contains a summation of indices, many mathematicians prefer the notation Δ 2 {\displaystyle \Delta ^{2}} over ∇ 4 {\displaystyle \nabla ^{4}} because the former makes clear which of the indices of the four nabla operators are contracted over.

  7. Nabla symbol - Wikipedia

    en.wikipedia.org/wiki/Nabla_symbol

    The nabla is a triangular symbol resembling an inverted Greek delta: [1] or ∇. The name comes, by reason of the symbol's shape, from the Hellenistic Greek word νάβλα for a Phoenician harp, [2] [3] and was suggested by the encyclopedist William Robertson Smith in an 1870 letter to Peter Guthrie Tait.

  8. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  9. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    A Cartesian coordinate surface in this space is a coordinate plane; for example z = 0 defines the x-y plane. In the same space, the coordinate surface r = 1 in spherical coordinates is the surface of a unit sphere, which is curved. The formalism of curvilinear coordinates provides a unified and general description of the standard coordinate ...