When.com Web Search

  1. Ads

    related to: regular star polyhedra plant varieties identification chart pictures free

Search results

  1. Results From The WOW.Com Content Network
  2. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.

  3. Star polyhedron - Wikipedia

    en.wikipedia.org/wiki/Star_polyhedron

    In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality. There are two general kinds of star polyhedron: Polyhedra which self-intersect in a repetitive way. Concave polyhedra of a particular kind which alternate convex and concave or saddle vertices in a repetitive way.

  4. Great grand stellated 120-cell - Wikipedia

    en.wikipedia.org/wiki/Great_grand_stellated_120-cell

    In geometry, the great grand stellated 120-cell or great grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,3}, one of 10 regular Schläfli-Hess 4-polytopes. It is unique among the 10 for having 600 vertices, and has the same vertex arrangement as the regular convex 120-cell .

  5. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  6. Kepler–Poinsot polyhedron - Wikipedia

    en.wikipedia.org/wiki/Kepler–Poinsot_polyhedron

    In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra. [1] They may be obtained by stellating the regular convex dodecahedron and icosahedron, and differ from these in having regular pentagrammic faces or vertex figures. They can all be seen as three-dimensional analogues of the pentagram in one way or another.

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    A regular polyhedron with Schläfli symbol {p, q}, Coxeter diagrams , has a regular face type {p}, and regular vertex figure {q}. A vertex figure (of a polyhedron) is a polygon, seen by connecting those vertices which are one edge away from a given vertex. For regular polyhedra, this vertex figure is always a regular (and planar) polygon.

  8. Star polygon - Wikipedia

    en.wikipedia.org/wiki/Star_polygon

    Two types of star pentagons {5/2} |5/2| A regular star pentagon, {5/2}, has five vertices (its corner tips) and five intersecting edges, while a concave decagon, |5/2|, has ten edges and two sets of five vertices. The first is used in definitions of star polyhedra and star uniform tilings, while the second is sometimes used in planar tilings.

  9. List of regular polytope compounds - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytope...

    For any natural number n, there are n-pointed star regular polygonal stars with Schläfli symbols {n/m} for all m such that m < n/2 (strictly speaking {n/m}={n/(n−m)}) and m and n are coprime. When m and n are not coprime, the star polygon obtained will be a regular polygon with n/m sides.