Search results
Results From The WOW.Com Content Network
Closed graph theorems are of particular interest in functional analysis where there are many theorems giving conditions under which a linear map with a closed graph is necessarily continuous. If f : X → Y is a function between topological spaces whose graph is closed in X × Y and if Y is a compact space then f : X → Y is continuous. [4]
Closed graph theorem [5] — If : is a map from a topological space into a Hausdorff space, then the graph of is closed if : is continuous. The converse is true when Y {\displaystyle Y} is compact .
Precisely, the theorem states that a linear operator between two Banach spaces is continuous if and only if the graph of the operator is closed (such an operator is called a closed linear operator; see also closed graph property). An important question in functional analysis is whether a given linear operator is continuous (or bounded).
A function is continuous on a semi-open or a closed interval; if the interval is contained in the domain of the function, the function is continuous at every interior point of the interval, and the value of the function at each endpoint that belongs to the interval is the limit of the values of the function when the variable tends to the ...
Surface plot : In this visualization of the graph of a bivariate function, a surface is plotted to fit a set of data triplets (X, Y, Z), where Z if obtained by the function to be plotted Z=f(X, Y). Usually, the set of X and Y values are equally spaced. Optionally, the plotted values can be color-coded.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Here, the graph Γ(T) is a linear subspace of the direct sum X ⊕ Y, defined as the set of all pairs (x, Tx), where x runs over the domain of T .) Explicitly, this means that for every sequence {x n} of points from the domain of T such that x n → x and Tx n → y, it holds that x belongs to the domain of T and Tx = y. [6]