Search results
Results From The WOW.Com Content Network
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.
A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average .
Despite the newly abstract situation, this definition is extremely similar in nature to the very simplest definition of expected values, given above, as certain weighted averages. This is because, in measure theory, the value of the Lebesgue integral of X is defined via weighted averages of approximations of X which take on finitely many values ...
In mathematics and statistics, the arithmetic mean (/ ˌ æ r ɪ θ ˈ m ɛ t ɪ k / arr-ith-MET-ik), arithmetic average, or just the mean or average (when the context is clear) is the sum of a collection of numbers divided by the count of numbers in the collection. [1] The collection is often a set of results from an experiment, an ...
The Marshall-Edgeworth index, credited to Marshall (1887) and Edgeworth (1925), [11] is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric. [12]
It is the most appropriate average for ratios and rates such as speeds, [1] [2] and is normally only used for positive arguments. [3] The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the numbers, that is, the generalized f-mean with () =. For example, the harmonic mean of 1, 4, and 4 is
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().