Search results
Results From The WOW.Com Content Network
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.
Least common multiple, a function of two integers; Living Computer Museum; Life cycle management, management of software applications in virtual machines or in containers; Logical Computing Machine, another name for a Turing machine
The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n.
As with direct recursion, tail call optimization is necessary if the recursion depth is large or unbounded, such as using mutual recursion for multitasking. Note that tail call optimization in general (when the function called is not the same as the original function, as in tail-recursive calls) may be more difficult to implement than the ...
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .
Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion. A drawing of the first 75 terms of Recamán's sequence, according with the method of visualization shown in the Numberphile video The Slightly Spooky Recamán Sequence [3]
Prune and search is a method of solving optimization problems suggested by Nimrod Megiddo in 1983. [ 1 ] The basic idea of the method is a recursive procedure in which at each step the input size is reduced ("pruned") by a constant factor 0 < p < 1 .