Ad
related to: parallel computing adalah pdf dalam manajemen dan
Search results
Results From The WOW.Com Content Network
An initial version of this model was introduced, under the MapReduce name, in a 2010 paper by Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. [2] As they and others showed, it is possible to simulate algorithms for other models of parallel computation, including the bulk synchronous parallel model and the parallel RAM, in the massively parallel communication model.
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. [1] Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism.
Task parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks —concurrently performed by processes or threads —across different processors.
A skilled parallel programmer may take advantage of explicit parallelism to produce efficient code for a given target computation environment. However, programming with explicit parallelism is often difficult, especially for non-computing specialists, because of the extra work and skill involved in developing it.
The parallel random-access machine [10] The actor model; Computational bridging models such as the bulk synchronous parallel (BSP) model; Petri nets; Process calculi. Calculus of communicating systems (CCS) Communicating sequential processes (CSP) model; π-calculus; Tuple spaces, e.g., Linda; Simple Concurrent Object-Oriented Programming (SCOOP)
Explicitly parallel instruction computing (EPIC) is a term coined in 1997 by the HP–Intel alliance [1] to describe a computing paradigm that researchers had been investigating since the early 1980s. [2] This paradigm is also called Independence architectures.
In parallel computing, execution occurs at the same physical instant: for example, on separate processors of a multi-processor machine, with the goal of speeding up computations—parallel computing is impossible on a single processor, as only one computation can occur at any instant (during any single clock cycle).
In computing, multiple instruction, single data (MISD) is a type of parallel computing architecture where many functional units perform different operations on the same data. Pipeline architectures belong to this type, though a purist might say that the data is different after processing by each stage in the pipeline.