Search results
Results From The WOW.Com Content Network
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.
This is the longest half-life directly measured for any unstable isotope; [4] only the half-life of tellurium-128 is longer. [ citation needed ] Of the chemical elements, only 1 element ( tin ) has 10 such stable isotopes, 5 have 7 stable isotopes, 7 have 6 stable isotopes, 11 have 5 stable isotopes, 9 have 4 stable isotopes, 5 have 3 stable ...
As the longest-lived radioactive isotope ruthenium-106 has a half-life of only 373.59 days, it has been suggested that the ruthenium and palladium in PUREX raffinate should be used as a source of the metals after allowing the radioactive isotopes to decay. [4] [5] After ten half life cycles have passed over 99.96% of any radioisotope is stable ...
Natural iron (26 Fe) consists of four stable isotopes: 5.845% 54 Fe (possibly radioactive with half-life > 4.4 × 10 20 years), [4] 91.754% 56 Fe, 2.119% 57 Fe and 0.286% 58 Fe. There are 28 known radioisotopes and 8 nuclear isomers, the most stable of which are 60 Fe (half-life 2.6 million years) and 55 Fe (half-life 2.7 years).
In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides , separated from known stable and long-lived primordial radionuclides .
Radioactive isotopes ranging from 11 O to 28 O have also been characterized, all short-lived. The longest-lived radioisotope is 15 O with a half-life of 122.266(43) s, while the shortest-lived isotope is the unbound 11 O with a half-life of 198(12) yoctoseconds, though half-lives have not been measured for the unbound heavy isotopes 27 O and 28 ...
These configurations imply that the most stable spherical isotopes would be flerovium-298, unbinilium-304 and unbihexium-310. Of particular note is 298 Fl, which would be "doubly magic" (both its proton number of 114 and neutron number of 184 are thought to be magic). This doubly magic configuration is the most likely to have a very long half-life.