Search results
Results From The WOW.Com Content Network
Curium(III) oxide is a compound composed of curium and oxygen with the chemical formula Cm 2 O 3. It is a crystalline solid with a unit cell that contains two curium atoms and three oxygen atoms. The simplest synthesis equation involves the reaction of curium(III) metal with O 2− : 2 Cm 3+ + 3 O 2− ---> Cm 2 O 3 . [ 1 ]
Iron(III) oxide is a product of the oxidation of iron. It can be prepared in the laboratory by electrolyzing a solution of sodium bicarbonate, an inert electrolyte, with an iron anode: 4 Fe + 3 O 2 + 2 H 2 O → 4 FeO(OH) The resulting hydrated iron(III) oxide, written here as FeO(OH), dehydrates around 200 °C. [18] [19] 2 FeO(OH) → Fe 2 O 3 ...
Metallic curium is annealed in air or in an oxygen atmosphere: [1] Cm + O 2 → CmO 2. Curium(III) hydroxide and curium(III) oxalate are also usually used for this purpose: Cm(OH) 4 → CmO 2 + 2H 2 O Cm(C 2 O 4) 2 → CmO 2 + 2CO 2 + 2CO. Another way is the reaction of curium(III) oxide in an oxygen atmosphere at 650 °C: [2] 2Cm 2 O 3 + O 2 ...
Curium readily reacts with oxygen forming mostly Cm 2 O 3 and CmO 2 oxides, [1] but the divalent oxide CmO is also known. [2] Black CmO 2 can be obtained by burning curium oxalate (Cm 2 (C 2 O 4) 3), nitrate (Cm(NO 3) 3), or hydroxide in pure oxygen. [3] [4] Upon heating to 600–650 °C in vacuum (about 0.01 Pa), it transforms into the whitish ...
Curium readily reacts with oxygen forming mostly Cm 2 O 3 and CmO 2 oxides, [53] but the divalent oxide CmO is also known. [67] Black CmO 2 can be obtained by burning curium oxalate (Cm 2 (C 2 O 4) 3), nitrate (Cm(NO 3) 3), or hydroxide in pure oxygen. [29] [68] Upon heating to 600–650 °C in vacuum (about 0.01 Pa), it transforms into the ...
Ferric iodide, a black solid, is not stable in ordinary conditions, but can be prepared through the reaction of iron pentacarbonyl with iodine and carbon monoxide in the presence of hexane and light at the temperature of −20 °C, with oxygen and water excluded. [13] Complexes of ferric iodide with some soft bases are known to be stable compounds.
Simplified diagram of the iron oxide cycle. For chemical reactions, the iron oxide cycle (Fe 3 O 4 /FeO) is the original two-step thermochemical cycle proposed for use for hydrogen production. [1] It is based on the reduction and subsequent oxidation of iron ions, particularly the reduction and oxidation between Fe 3+ and Fe 2+.
Iron oxides feature as ferrous or ferric or both. They adopt octahedral or tetrahedral coordination geometry. Only a few oxides are significant at the earth's surface, particularly wüstite, magnetite, and hematite. Oxides of Fe II. FeO: iron(II) oxide, wüstite; Mixed oxides of Fe II and Fe III. Fe 3 O 4: Iron(II,III) oxide, magnetite; Fe 4 O ...