Ad
related to: pierre de fermat calculus 8th
Search results
Results From The WOW.Com Content Network
Pierre de Fermat (French: [pjɛʁ də fɛʁma]; [a] 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality.
Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.
In mathematics, Fermat's theorem (also known as interior extremum theorem) is a theorem which states that at the local extrema of a differentiable function, its derivative is always zero. It belongs to the mathematical field of real analysis and is named after French mathematician Pierre de Fermat .
1629 – Pierre de Fermat develops a rudimentary differential calculus. 1634 – Gilles de Roberval shows that the area under a cycloid is three times the area of its generating circle. 1636 – Muhammad Baqir Yazdi jointly discovered the pair of amicable numbers 9,363,584 and 9,437,056 along with Descartes (1636).
[1] [2] [3] Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively.
The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.
Analytic geometry was independently invented by René Descartes and Pierre de Fermat, [8] [9] although Descartes is sometimes given sole credit. [10] [11] Cartesian geometry, the alternative term used for analytic geometry, is named after Descartes.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...