Search results
Results From The WOW.Com Content Network
A star is a tree with exactly one internal vertex. Applying the Halin graph construction to a star produces a wheel graph, the graph of the (edges of) a pyramid. [4] The graph of a triangular prism is also a Halin graph: it can be drawn so that one of its rectangular faces is the exterior cycle, and the remaining edges form a tree with four leaves, two interior vertices, and five edges.
A cuboid, a topological cube, has 8 vertices, 12 edges, and 6 quadrilateral faces, making it a type of hexahedron. In the context of meshes, a cuboid is often called a hexahedron, hex, or brick. [1] For the same cell amount, the accuracy of solutions in hexahedral meshes is the highest.
A 4-crossed prism graph is the same as the cubical graph with 8 vertices, 12 edges. A 6-crossed prism graph is also the Franklin graph with 12 vertices, 18 edges. In An Atlas of Graphs the first few are listed in the set of Connected cubic transitive graphs indexed as Ct5, Ct12, Ct19, Ct29, Ct42, Ct54, and Ct74 for 4, 6, 8, 10, 12, 14, and 16 ...
A right prism is a prism in which the joining edges and faces are perpendicular to the base faces. [5] This applies if and only if all the joining faces are rectangular. The dual of a right n-prism is a right n-bipyramid. A right prism (with rectangular sides) with regular n-gon bases has Schläfli symbol { }×{n}.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.
Packing of irregular objects is a problem not lending itself well to closed form solutions; however, the applicability to practical environmental science is quite important. For example, irregularly shaped soil particles pack differently as the sizes and shapes vary, leading to important outcomes for plant species to adapt root formations and ...
The fact that the no-three-in-line problem has a solution with linearly many points can be translated into graph drawing terms as meaning that every graph, even a complete graph, can be drawn without unwanted vertex-edge incidences using a grid whose area is quadratic in the number of vertices, and that for complete graphs no such drawing with ...
This notation represents (i) the number of vertices, (ii) the number of polygons around each vertex (arranged clockwise) and (iii) the number of sides to each of those polygons. For example: 3 6 ; 3 6 ; 3 4 .6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling.