When.com Web Search

  1. Ad

    related to: fiber of a morphism pdf format definition history

Search results

  1. Results From The WOW.Com Content Network
  2. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    A function between topological spaces is called monotone if every fiber is a connected subspace of its domain. A function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } is monotone in this topological sense if and only if it is non-increasing or non-decreasing , which is the usual meaning of " monotone function " in real analysis .

  3. Fiber product of schemes - Wikipedia

    en.wikipedia.org/wiki/Fiber_product_of_schemes

    Then there is a morphism Spec(k(y)) → Y with image y, where k(y) is the residue field of y. The fiber of f over y is defined as the fiber product X × Y Spec(k(y)); this is a scheme over the field k(y). [3] This concept helps to justify the rough idea of a morphism of schemes X → Y as a family of schemes parametrized by Y.

  4. Fibred category - Wikipedia

    en.wikipedia.org/wiki/Fibred_category

    The choice of a (normalised) cleavage for a fibred -category specifies, for each morphism : in , a functor:; on objects is simply the inverse image by the corresponding transport morphism, and on morphisms it is defined in a natural manner by the defining universal property of cartesian morphisms.

  5. Morphism - Wikipedia

    en.wikipedia.org/wiki/Morphism

    A morphism f : X → Y is called an isomorphism if there exists a morphism g : Y → X such that f ∘ g = id Y and g ∘ f = id X. If a morphism has both left-inverse and right-inverse, then the two inverses are equal, so f is an isomorphism, and g is called simply the inverse of f. Inverse morphisms, if they exist, are unique.

  6. Smooth morphism - Wikipedia

    en.wikipedia.org/wiki/Smooth_morphism

    (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.

  7. Quasi-finite morphism - Wikipedia

    en.wikipedia.org/wiki/Quasi-finite_morphism

    In algebraic geometry, a branch of mathematics, a morphism f : X → Y of schemes is quasi-finite if it is of finite type and satisfies any of the following equivalent conditions: [1] Every point x of X is isolated in its fiber f −1 (f(x)). In other words, every fiber is a discrete (hence finite) set.

  8. Bundle map - Wikipedia

    en.wikipedia.org/wiki/Bundle_map

    In mathematics, a bundle map (or bundle morphism) is a morphism in the category of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber ...

  9. Contraction morphism - Wikipedia

    en.wikipedia.org/wiki/Contraction_morphism

    It is also commonly called an algebraic fiber space, as it is an analog of a fiber space in algebraic topology. By the Stein factorization, any surjective projective morphism is a contraction morphism followed by a finite morphism. Examples include ruled surfaces and Mori fiber spaces.