Search results
Results From The WOW.Com Content Network
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
In computer science, cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values. For any function f that maps a finite set S to itself, and any initial value x 0 in S , the sequence of iterated function values
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
The repeat statement repetitively executes a block of one or more statements through an until statement and continues repeating unless the condition is false. The main difference between the two is the while loop may execute zero times if the condition is initially false, the repeat-until loop always executes at least once.
Their exact values are not known, but upper and lower bounds on their values have been proven, [15] and it is known that they grow inversely proportionally to the square root of the alphabet size. [16] Simplified mathematical models of the longest common subsequence problem have been shown to be controlled by the Tracy–Widom distribution. [17]
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement.
To find a single match of a single pattern, the expected time of the algorithm is linear in the combined length of the pattern and text, although its worst-case time complexity is the product of the two lengths. To find multiple matches, the expected time is linear in the input lengths, plus the combined length of all the matches, which could ...
Thus the loop will always result in x = 2 and will never break. This could be fixed by moving the x = 1 instruction outside the loop so that its initial value is set only once. In some languages, programmer confusion about mathematical symbols may lead to an unintentional infinite loop. For example, here is a snippet in C: