When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Δp is the pressure difference between the two ends, L is the length of pipe, μ is the dynamic viscosity, Q is the volumetric flow rate, R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe.

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation. [1] The Darcy–Weisbach equation contains a dimensionless friction factor, known as the Darcy friction factor. This is also ...

  4. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s , e.g. water.

  5. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  6. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    pressure drop across constriction (unit force per unit area) The above equations calculate the steady state mass flow rate for the pressure and temperature existing in the upstream pressure source. If the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate.

  7. Venturi effect - Wikipedia

    en.wikipedia.org/wiki/Venturi_effect

    As fluid flows through a Venturi, the expansion and compression of the fluids cause the pressure inside the Venturi to change. This principle can be used in metrology for gauges calibrated for differential pressures. This type of pressure measurement may be more convenient, for example, to measure fuel or combustion pressures in jet or rocket ...

  8. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Eq.2b is a fundamental equation for most of discrete models. The equation can be solved by recurrence and iteration method for a manifold. It is clear that Eq.2a is limiting case of Eq.2b when ∆X → 0. Eq.2a is simplified to Eq.1 Bernoulli equation without the potential energy term when β=1 whilst Eq.2 is simplified to Kee's model [6] when β=0

  9. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.