When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cubic crystal system - Wikipedia

    en.wikipedia.org/wiki/Cubic_crystal_system

    The plane of a face-centered cubic lattice is a hexagonal grid. Attempting to create a base-centered cubic lattice (i.e., putting an extra lattice point in the center of each horizontal face) results in a simple tetragonal Bravais lattice. Coordination number (CN) is the number of nearest neighbors of a central atom in the structure. [1]

  3. Atomic packing factor - Wikipedia

    en.wikipedia.org/wiki/Atomic_packing_factor

    For a face-centered cubic unit cell, the number of atoms is four. A line can be drawn from the top corner of a cube diagonally to the bottom corner on the same side of the cube, which is equal to 4r. Using geometry, and the side length, a can be related to r as: =.

  4. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions .

  5. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    The distance between the centers along the shortest path namely that straight line will therefore be r 1 + r 2 where r 1 is the radius of the first sphere and r 2 is the radius of the second. In close packing all of the spheres share a common radius, r. Therefore, two centers would simply have a distance 2r.

  6. Interstitial site - Wikipedia

    en.wikipedia.org/wiki/Interstitial_site

    Octahedral (red) and tetrahedral (blue) interstitial symmetry polyhedra in a face-centered cubic lattice. The actual interstitial atom would ideally be in the middle of one of the polyhedra. A close packed unit cell, both face-centered cubic and hexagonal close packed, can form two different shaped holes.

  7. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    The Wigner–Seitz cell of the face-centered cubic lattice is a rhombic dodecahedron. [9] In mathematics, it is known as the rhombic dodecahedral honeycomb . The Wigner–Seitz cell of the body-centered tetragonal lattice that has lattice constants with c / a > 2 {\displaystyle c/a>{\sqrt {2}}} is the elongated dodecahedron .

  8. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    Slip in face centered cubic (fcc) crystals occurs along the close packed plane. Specifically, the slip plane is of type {111} , and the direction is of type < 1 10>. In the diagram on the right, the specific plane and direction are (111) and [ 1 10], respectively.

  9. Nickel - Wikipedia

    en.wikipedia.org/wiki/Nickel

    [20] [14] The unit cell of nickel is a face-centered cube; it has lattice parameter of 0.352 nm, giving an atomic radius of 0.124 nm. This crystal structure is stable to pressures of at least 70 GPa. Nickel is hard, malleable and ductile, and has a relatively high electrical and thermal conductivity for transition metals. [21]