Search results
Results From The WOW.Com Content Network
In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions (and ) that produces a third function (). The term convolution refers to both the resulting function and to the process of computing it.
Concoction is the process of preparing a medicine, food or other substance out of many ingredients, and also the result of such a process. Historically, the word referred to digestion , as conceived by Aristotle who theorized that this was the result of the heat of the body acting upon the material, causing it to mature and ripen.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
One can also speak of "almost all" integers having a property to mean "all except finitely many", despite the integers not admitting a measure for which this agrees with the previous usage. For example, "almost all prime numbers are odd". There is a more complicated meaning for integers as well, discussed in the main article.
The preceding kinds of definitions, which had prevailed since Aristotle's time, [4] were abandoned in the 19th century as new branches of mathematics were developed, which bore no obvious relation to measurement or the physical world, such as group theory, projective geometry, [3] and non-Euclidean geometry.
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. Much of analysis happens in some metric space; the most commonly used are the real line , the complex plane , Euclidean space , other vector spaces , and the integers .
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.