Search results
Results From The WOW.Com Content Network
The leptomeningeal collateral circulation (also known as leptomeningeal anastomoses or pial collaterals) is a network of small blood vessels in the brain that connects branches of the middle, anterior and posterior cerebral arteries (MCA, ACA, and PCA), [1] with variation in its precise anatomy between individuals. [2]
Cerebral blood flow (CBF) is the blood supply to the brain in a given period of time. [8] In an adult, CBF is typically 750 millilitres per minute or 15.8 ± 5.7% of the cardiac output. [9] This equates to an average perfusion of 50 to 54 millilitres of blood per 100 grams of brain tissue per minute. [10] [11] [12]
In peripheral organs, lymphatic vessels are responsible for conducting lymph between different parts of the body. In general, lymphatic drainage is important for maintaining fluid homeostasis as well as providing a means for immune cells to traffic into draining lymph nodes from other parts of the body, allowing for immune surveillance of bodily tissues.
Collateral circulation is the alternate circulation around a blocked artery or vein via another path, such as nearby minor vessels. [1] It may occur via preexisting vascular redundancy (analogous to engineered redundancy), as in the circle of Willis in the brain, or it may occur via new branches formed between adjacent blood vessels (neovascularization), as in the eye after a retinal embolism ...
The majority of the CSF is formed in the choroid plexus and flows through the brain along a distinct pathway: moving through the cerebral ventricular system, into the subarachnoid space surrounding the brain, then draining into the systemic blood column via arachnoid granulations of the dural sinuses or to peripheral lymphatics along cranial ...
The circle of Willis (also called Willis' circle, loop of Willis, cerebral arterial circle, and Willis polygon) is a circulatory anastomosis that supplies blood to the brain and surrounding structures in reptiles, birds and mammals, including humans. [1] It is named after Thomas Willis (1621–1675), an English physician. [2]
In general, decrease in blood flow to the brain can be a result of thrombosis causing a partial or full blockage of blood vessels, hypotension in systemic circulation (and consequently the brain), or cardiac arrest. This decrease in blood flow in the cerebral vascular system can result in a buildup of metabolic wastes generated by neurons and ...
The cells of the neurovascular unit also make up the blood–brain barrier (BBB), which plays an important role in maintaining the microenvironment of the brain. [11] In addition to regulating the exit and entrance of blood, the blood–brain barrier also filters toxins that may cause inflammation, injury, and disease. [12]