Search results
Results From The WOW.Com Content Network
The numerator equates to the number of ways to select the winning numbers multiplied by the number of ways to select the losing numbers. For a score of n (for example, if 3 choices match three of the 6 balls drawn, then n = 3), ( 6 n ) {\displaystyle {6 \choose n}} describes the odds of selecting n winning numbers from the 6 winning numbers.
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
In expected utility theory, a lottery is a discrete distribution of probability on a set of states of nature.The elements of a lottery correspond to the probabilities that each of the states of nature will occur, (e.g. Rain: 0.70, No Rain: 0.30). [1]
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
The three-choose-two combination yields two results, depending on whether a bin is allowed to have zero items. In both results the number of bins is 3. If zero is not allowed, the number of cookies should be n = 6, as described in the previous figure. If zero is allowed, the number of cookies should only be n = 3.
A powerful balls-into-bins paradigm is the "power of two random choices [2]" where each ball chooses two (or more) random bins and is placed in the lesser-loaded bin. This paradigm has found wide practical applications in shared-memory emulations, efficient hashing schemes, randomized load balancing of tasks on servers, and routing of packets ...
Then, everybody is given a number in the range from 0 to N-1, and random numbers are generated, either electronically or from a table of random numbers. Numbers outside the range from 0 to N-1 are ignored, as are any numbers previously selected. The first X numbers would identify the lucky ticket winners.
We want to calculate the probability that the red ball is not taken. First we consider the Wallenius model. The probability that the red ball is not taken in the first draw is 1000/2000 = 1 ⁄ 2. The probability that the red ball is not taken in the second draw, under the condition that it was not taken in the first draw, is 999/1999 ≈ 1 ⁄ 2.