Search results
Results From The WOW.Com Content Network
A single transformer may serve one large building or many homes. Pad-mounted transformers are made in power ratings from around 15 to around 5000 kVA and often include built-in fuses and switches. Primary power cables may be connected with elbow connectors, which can be operated when energized using a hot stick and allows for flexibility in ...
Distribution transformers typically have ratings less than 200 kVA, [3] although some national standards allow units up to 5000 kVA to be described as distribution transformers. Since distribution transformers are energized 24 hours a day (even when they don't carry any load), reducing iron losses is vital in their design.
A delta-wye transformer is a type of three-phase electric power transformer design that employs delta-connected windings on its primary and wye/star connected windings on its secondary. A neutral wire can be provided on wye output side. It can be a single three-phase transformer, or built from three independent single-phase units.
By choosing the base quantities in this manner, the transformer can be effectively removed from the circuit as described above. For example: Take a transformer that is rated at 10 kVA and 240/100 V. The secondary side has an impedance equal to 1∠0° Ω. The base impedance on the secondary side is equal to:
A transformer supplying a three-wire distribution system has a single-phase input (primary) winding. The output (secondary) winding has a center tap connected to a grounded neutral. As shown in Fig. 1, either end to center has half the voltage of end-to-end. Fig. 2 illustrates the phasor diagram
The rated secondary current is normally standardized at 1 or 5 amperes. For example, a 4000:5 CT secondary winding will supply an output current of 5 amperes when the primary winding current is 4000 amperes. This ratio can also be used to find the impedance or voltage on one side of the transformer, given the appropriate value at the other side.
A planar transformer Exploded view: the spiral primary "winding" on one side of the PCB (the spiral secondary "winding" is on the other side of the PCB) Manufacturers either use flat copper sheets or etch spiral patterns on a printed circuit board to form the "windings" of a planar transformer, replacing the turns of wire used to make other ...
Voltage was stepped down to 100 volts using the Stanley transformer to power incandescent lamps at 23 businesses over 4,000 feet (1,200 m). [12] This practical demonstration of a transformer and alternating current lighting system led Westinghouse to begin installing AC systems later that year. [11] In 1888 the first designs for an AC motor ...